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The stability of rotating-disc boundary-layer
flow over a compliant wall.

Part 1. Type I and II instabilities

By A. J. C O O P E R† AND P E T E R W. C A R P E N T E R
Department of Engineering, University of Warwick, Coventry, CV4 7AL, UK

(Received 23 May 1996 and in revised form 3 July 1997)

A theoretical study into the effects of wall compliance on the stability of the rotating-
disc boundary layer is described. A single-layer viscoelastic wall model is coupled to
a sixth-order system of fluid stability equations which take into account the effects
of viscosity, Coriolis acceleration, and streamline curvature. The coupled system of
equations is integrated numerically by a spectral Chebyshev-tau technique.

Travelling and stationary modes are studied and wall compliance is found to greatly
increase the complexity of the eigenmode spectrum. It is effective in stabilizing the
inviscid Type I (or cross-flow) instability. The effect on the viscous (Type II) eigenmode
is more complex and can be strongly destabilizing. An analysis of the energy flux
indicates that this destabilization arises as a result of a large degree of energy
production by viscous stresses at the wall/flow interface.

The Type I and II instabilities are shown to be negative and positive energy waves
respectively. The co-existence of eigenmodes of opposite energy type indicates the
possibility of modal interaction and coalescence. It is found that, compared with
the rigid disc, wall compliance promotes the interaction and coalescence of the
Type I and II eigenmodes. There is an associated strong instability which appears
to be characterized by marked horizontal motion of the compliant surface. Modal
coalescence is interpreted physically as producing local algebraic growth which could
advance the onset of nonlinear effects.

1. Introduction
It has been clearly established over the last decade, through experimental and

theoretical investigations, that wall compliance can suppress the growth of Tollmien–
Schlichting (T–S) waves in a flat-plate boundary layer leading to a substantial delay
in the onset of laminar-turbulent transition. Reviews are given by Gad-el-Hak (1986),
Riley, Gad-el-Hak & Metcalfe (1988) and Carpenter (1990). However, these positive
conclusions remain pertinent only to the case of the two-dimensional Blasius boundary
layer with zero external pressure gradient where T–S waves become destabilized by an
essentially viscous mechanism. It remains to be established whether wall compliance
is as effective in controlling the growth of other forms of instability, particularly those
arising as a result of inviscid instability mechanisms.

This is an important question since in real aerospace and marine applications
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boundary layers are usually three-dimensional and/or develop in a non-zero pressure
gradient, which is likely to be adverse over some part of the surface. The instabilities
which arise in these cases are of a different nature to the T–S instability. Velocity
profiles with points of inflection can develop either because of the effects of an
adverse pressure gradient or as a result of the three-dimensional nature of the flow.
The presence of an inflection point in the velocity profile promotes the more powerful,
inviscid instability mechanism identified by Rayleigh (1880) and in the case of three-
dimensional flows the instability manifests itself in the form of cross-flow vortices.
The growth of disturbances generated by this mechanism persists to indefinitely high
Reynolds number and the amplification rates are also significantly higher than those
of the T–S instability. In order for wall compliance to be useful in a practical sense
it is therefore desirable that it should be effective in reducing growth rates in cases
where this inflection-point instability dominates. It has been established theoretically
(Cooper & Carpenter 1997a) that wall compliance can act to stabilize such inflection-
point instabilities in two-dimensional boundary layers in the presence of an adverse
pressure gradient. The aim in this paper is to establish whether wall compliance is
capable of controlling instability growth in a three-dimensional boundary layer where
inflection-point instability mechanisms dominate.

The representative case examined here is the three-dimensional boundary layer
which develops over a rotating disc in an initially still ambient fluid. This relatively
simple idealized flow exhibits many of the features found in boundary layers in
practical applications. Of significance is the cross-flow instability which arises as a
result of an inflection point in the radial component of the velocity profile and it
is this form of instability which can lead to transition in the leading-edge region
of swept wings. The rotating disc provides a convenient means of studying three-
dimensional boundary layers experimentally as well as being amenable to theoretical
studies. Recently Cooper & Carpenter (1995) and Carpenter & Cooper (1996) have
carried out preliminary stability analyses to study the effects of wall compliance on the
three-dimensional boundary layer over a rotating disc. Their results indicate that wall
compliance can have a markedly stabilizing effect on the inviscid instability modes.
The current paper presents further results from this investigation, focusing attention
on stationary Type I disturbances, which have been well-studied in the rigid-disc case,
as well as presenting further results concerning the Type II instability.

Although the primary instability mechanism is essentially inviscid, viscous effects
must be considered in the stability analysis if growth rates are to be represented
accurately. Incorporating viscous terms in the usual sense results in the well-known
Orr–Sommerfeld equation. In the case of the rotating disc, however, this fourth-order
equation is not sufficient to represent the instability characteristics completely. Lilly
(1966) established that the inclusion of Coriolis acceleration terms had a significant
effect on the stability characteristics of the Ekman boundary layer owing to the gener-
ation of the Type II instability. Later Malik, Wilkinson & Orszag (1981) demonstrated
that Coriolis and streamline curvature effects also have a significant stabilizing effect
on the stationary Type I disturbances for the rotating-disc boundary layer. Incor-
porating both of these effects results in a sixth-order system of ordinary differential
equations which reduces to the Orr–Sommerfeld equation when the Coriolis and
streamline curvature terms are neglected.

The instability of the boundary layer over a rigid rotating disc has been studied
extensively and the characteristic features of the eigenmode spectrum are quite com-
plex: at least three distinct families of eigensolutions have been identified. One is
the inviscid or Type I instability first studied by Gregory, Stuart & Walker (1955)
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which was followed by notable contributions from Malik et al. (1981), Wilkinson &
Malik (1983, 1985) and Mack (1985). This form of instability is considered to be
the commonest route to transition and has been well studied experimentally. The
early work by Gregory et al. using a china-clay visualization technique was able to
show the cross-flow instability clearly, which appeared as a series of closely spaced
spiral streaks stationary relative to the disc surface. Mack successfully modelled the-
oretically the modulated disturbance forms observed experimentally by Wilkinson
& Malik, thereby establishing that they result from a superposition of the com-
plete zero-frequency azimuthal wavenumber spectrum. It was also noted by Mack
(1985) that, although the experimentally observed spiral streaks correspond to zero-
frequency disturbances, they are not the most unstable modes in the boundary layer.
Some travelling modes were found to have a higher growth rate than the stationary
ones. More comprehensive information on the theoretical stability characteristics of
travelling modes was supplied by Balakumar & Malik (1990) who confirmed Mack’s
results.

Until fairly recently the role of the travelling disturbances in experiments on tran-
sition remained fairly obscure. This was despite the fact that in the first experimental
study of instability of the rotating-disc boundary layer Smith (1946) used two hot-
wire probes and detected travelling disturbances. Recently, however, travelling modes
have been detected and studied experimentally. Jarre, Le Gal & Chauve (1996a, b)
(see also Jarre, Le Gal & Chauve 1991 and Le Gal 1992) have carried out two-point
measurements with hot-film probes enabling them to measure phase speeds. Jarre et
al. (1996a) found that, for the natural transition process over a nominally smooth
disc, travelling waves dominated in the early stages of instability. For the later stages,
when the disturbances had reached a larger amplitude, stationary disturbances dom-
inated. Jarre et al. (1996b) then studied the case when transition is forced with a
roughness element placed at a position just inboard of the location corresponding
to the linear threshold for Type I instability. The roughness element was of a size
comparable to the boundary-layer thickness and accordingly generated fairly strong
finite-amplitude disturbances. Nevertheless one might have expected strong stationary
disturbances to have dominated the transition process. What was found instead was
that the dominant disturbances had a small, but definite, negative phase speed, i.e.
they travelled with a circumferential phase speed slightly less than the disc rotation
speed. The range of propagation angles at this phase speed agreed well with the
theoretical predictions of Balakumar & Malik (1990). But, owing to finite-amplitude
effects, good agreement with linear stability theory was not found in other respects.
It is probably true, however, that the most dramatic role played by the travelling
modes is to generate absolute instability. This was discovered recently by Lingwood
(1995, 1996) and will be discussed below. Corke & Knasiak (1996) appear to have
discovered another important role played by the travelling modes in the transition
process and their work will also be discussed below.

A second family of eigenmodes, termed Type II, contains a weaker, viscous insta-
bility which appears only when Coriolis effects are included. A similar instability was
first discovered in the Ekman boundary layer by Faller (1963). In the rotating-disc
boundary layer, according to theory, the stationary form of this instability appears at
a substantially higher critical Reynolds number than the Type I. This may be why it
has not been observed in the great majority of experimental studies. The travelling
form of the Type II instability, on the other hand, typically first occurs at a much
lower Reynolds numbers than the Type I mode (Balakumar & Malik 1990; Faller
1991). Coriolis acceleration is essential for its destabilization, but little else is known
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about the precise physical instability mechanism. The role of the Type II mode in the
transition process has been addressed by the numerical study of Faller (1991), but
little else is known about this issue.

A third family of eigenmodes, which we will term Type III, was first identified by
Mack (1985) and briefly mentioned by Balakumar & Malik (1990). The eigenmodes
are found to have relatively large negative values of αi (where α = αr + iαi is the
complex radial wavenumber), but are conventionally considered to be strongly stable
modes in view of their inwardly directed group velocity. Recently Lingwood (1995)
has shown that the Types III and I eigenmodes can coalesce to form an absolute
instability, thereby providing another route to transition. This has been confirmed
experimentally in Lingwood (1996). We will investigate the effect of wall compliance
on this absolute instability in Part 2 (Cooper & Carpenter 1997b).

Hall (1986) has developed triple-deck asymptotic analyses for both the stationary
Type I and II instabilities. His linear analysis was the basis for the weakly nonlinear
theory of MacKerrell (1987) for the Type II instability. She showed that unless a
certain threshold amplitude is exceeded the Type II disturbance will only grow for
Reynolds numbers slightly above critical before decaying to zero at higher Reynolds
numbers. Clear evidence of the existence of Type II instabilities in the related Ekman
boundary-layer flow has long been available (Faller 1963, 1991). MacKerrell’s non-
linear theory may partly explain, why, aside from the rather uncertain observations
of Federov et al. (1976), the Type II instability has apparently been much more
difficult to identify in experiments on the rotating disc. However, clear evidence of the
existence of Type II instabilities has been revealed by Lingwood (1996) in her recent
experimental study of the impulsively perturbed rotating-disc flow.

There have been some further studies of nonlinear instability of the rotating-disc
system. For example, Bassom & Gajjar (1988) carried out an asymptotic study along
broadly similar lines to Hall (1986) and MacKerrell (1987) for weakly and strongly
nonlinear non-stationary instabilities. Of course, nonlinear mechanisms in some form
must be responsible for the final breakdown to turbulence. The most widely studied
such mechanism is the secondary instability of the Type I mode. It was evident in the
hot-wire signals of Wilkinson & Malik (1983, 1985). It has been studied experimentally
in detail by Kohama (1984, 1987) and Kohama & Suda (1993) and theoretically by
Balachandar, Streett & Malik (1992) by means of a Floquet analysis. More recently
Corke & Knasiak (1996) have shown that a triad coupling between pairs of travelling
eigenmodes and a stationary mode could be responsible for the final breakdown to
turbulence in their experimental study.

A series of experimental studies has been carried out on the rotating disc with a
compliant wall by Hansen & Hunston (1974, 1976, 1983) who used polyvinyl-chloride
walls. Their work focused on hydroelastic instability. The experimental study of Chung
(1985), who used walls of a multi-layered construction, found drag reduction in some
cases. This suggests that either transition delay or turbulence reduction occurred.
But the drag reduction was detected solely by torque measurements, so the physical
mechanisms responsible could not be determined.

Compliant-wall dynamics can be represented theoretically by using the plate–spring
model of Carpenter & Garrad (1985). This model is relatively simple to implement
computationally but in order to relate to ongoing experimental investigations the
more realistic volume-based compliant-wall model described by Yeo (1988) and
Dixon, Lucey & Carpenter (1994) is used in the present paper. This type of wall
basically comprises a soft viscoelastic substrate layer firmly attached at the base to
a rigid wall with or without a much stiffer thin outer layer. Recently Yeo, Khoo &
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Chong (1994a) have investigated the so-called non-parallel effects on boundary-layer
stability over compliant walls of this type.

The effects of wall compliance as far as controlling flow instabilities is concerned
obviously increase with the degree of compliance, but the walls are themselves wave-
bearing media and above some threshold level become susceptible to wall-based
instabilities. These instabilities can provide an alternative route to transition. They
can also generate powerful instabilities through modal coalescence. There are two
principal hydroelastic modes, namely divergence and travelling-wave flutter (TWF)
which generally limit the admissible degree of compliance.

The divergence instability can be particularly damaging to the prospects of using
wall compliance as an effective means of transition delay. It is induced by an imbalance
between the wall’s structural forces and the conservative hydrodynamic pressure
forces generated by disturbances on the surface. Divergence has been shown to be an
absolute instability such that disturbance kinetic energy is not convected away from
its point of origin and grows indefinitely at that location. It is therefore essential that
any compliant wall used for laminar-flow control should be free from this instability.

TWF is a convective instability but brought about by an essentially inviscid mech-
anism. It is characterized by high phase speeds close to the free-stream value and
this instability grows by the irreversible transfer of energy from the flow to the wall
as a result of work done by the fluctuating pressure. This hydroelastic mode can
persist to indefinitely high Reynolds number and Lucey & Carpenter (1995) show
that TWF is a common route to transition in the boundary layers over compliant
walls studied experimentally by Gaster (1987). Wall parameters should therefore be
chosen carefully to avoid both divergence and TWF.

In order for wall compliance to be most effective wall parameters would ideally
be selected to give marginal stability with respect to the wall-based instabilities.
However, when using the realistic viscoelastic wall model in conjunction with the
three-dimensional geometry of the disc it would be difficult and computationally
costly to determine such optimal wall parameters. Our experimental and theoretical
investigations for the rotating disc are therefore restricted to compliant walls of single-
layer construction. This type of wall is also somewhat easier to manufacture than the
two-layer configuration. Despite the apparent simplicity of the single-layer wall it has
been observed for the two-dimensional Blasius boundary layer that the eigenvalue
spectrum for the coupled wall/flow problem exhibits considerable complexity. Yeo
(1988) established numerically the existence of at least four different unstable eigen-
modes for Blasius flow over a single-layer viscoelastic wall. The instabilities which
develop in this wall/flow configuration were also investigated by Fraser & Carpenter
(1985) with the observation that in the absence of any flow there exists an infinite
number of free wave modes and that at least the first three of these may develop into
instabilities.

In the present paper, Part 1, attention is focused on the response of the Type I
and II modes to the presence of a compliant boundary. The effect of wall compliance
on the absolute instability of the rotating-disc boundary layer, arising from the
coalescence of the Type I and III eigenmodes, is considered in Part 2 (Cooper &
Carpenter 1997b). And the hydroelastic instabilities are briefly mentioned in Carpenter
& Cooper (1996).

The outline of the paper is as follows. Section 2 describes the formulation of
the fluid problem and the numerical method of solution of the governing stability
equations. The dynamics of the wall motion and the coupling of wall and fluid
motions are described in §3 and §4 respectively. Results from the study are presented
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Figure 1. Radial (F), azimuthal (G) and axial (H) velocity components
for boundary layer flow over a rotating disc.

in §5 where stationary and travelling modes are considered along with an integral
energy equation for three-dimensional disturbances. Conclusions are drawn in §6.

2. Formulation of the fluid problem
The disc is assumed to be infinite in diameter and rotating about its centre at a

constant angular velocity Ω. A cylindrical coordinate system in the rotating frame
is used with radius r∗, azimuthal angle θ and normal direction z∗ and the fluid is
assumed to occupy the region z∗ > 0. The mean flow field is obtained from the exact
similarity solution of the Navier–Stokes equations due to von Kármán (1921). In the
rotating frame the mean velocity components and pressure are written

ū = r∗ΩF(z), v̄ = r∗ΩG(z),

w̄= (νΩ)1/2H(z), p̄= ρνΩP (z),

where z is the non-dimensional length scaled by the boundary-layer displacement
thickness δ∗ = (ν/Ω)1/2, with ν the kinematic viscosity and ρ the fluid density.

Using these expressions in the Navier–Stokes equations gives the following gov-
erning conditions for the mean flow field where primes denote differentiation with
respect to z:

F2 − (G+ 1)2 + F ′H − F ′′ = 0, (1)

2F(G+ 1) + G′H − G′′ = 0, (2)

P ′ +HH ′ −H ′′ = 0, (3)

2F +H ′ = 0. (4)

Boundary conditions are

F(0) = G(0) = H(0) = 0,

F = 0, G = −1 as z →∞.
The variation of the non-dimensional mean velocity components, F,G and H with

z are shown in figure 1.
A linear stability analysis, following Malik et al. (1981), is carried out first for the

rigid-wall problem, whilst the adaptation of this to incorporate a compliant boundary
will be treated in a subsequent section.

A space–time-dependent perturbation field of infinitesimal disturbances, [ũ, p̃], is



Rotating-disc boundary-layer flow over a compliant wall. Part 1 237

imposed on the mean flow field, and throughout δ∗, r∗eΩ and ρr∗2e Ω
2 are used to

non-dimensionalize length, velocity and pressure respectively with r∗e taken to be a
fixed radial position for the stability analysis. This gives the following dimensionless
form for the perturbed flow field:

u(r, θ, z, t) =
r

R
F(z) + ũ(r, θ, z, t), (5)

v(r, θ, z, t) =
r

R
G(z) + ṽ(r, θ, z, t), (6)

w(r, θ, z, t) =
1

R
H(z) + w̃(r, θ, z, t), (7)

p(r, θ, z, t) =
1

R2
P (z) + p̃(r, θ, z, t). (8)

r = r∗(Ω/ν)1/2 is the variable non-dimensional radius and the Reynolds number

R = r∗e (Ω/ν)
1/2

is the non-dimensional fixed radius.
The non-dimensional Navier–Stokes equations for this flow problem in the rotating

frame are
∂u

∂t
+ (u · ∇)u+

2

R
(k ∧ u) + ∇p− 1

R
∇2u = 0, (9)

∇ · u = 0, (10)

where u = [u, v, w]T and k is the unit vector in the z-direction. (2/R)k∧ u is the Cori-
olis acceleration whilst centrifugal terms have been incorporated within a modified
pressure term, p.

The above equations are linearized with respect to the disturbances and following
this several approximations are made which allow the equations to become separable
in r, θ and t. Firstly the quantity r is replaced by R so that the slow variation of
flow variables with r is ignored. Terms of order R−2 and higher-order terms are
subsequently assumed to be negligible. The perturbation quantities are then expressed
in the form of normal modes so that

[ũ, ṽ, w̃, p̃]T = [f(z), g(z), h(z), π(z)]TE + c.c. (11)

where E = exp{i(αr + βRθ − ωt)}, α is the radial wavenumber, β the azimuthal
wavenumber, ω the frequency of the disturbance and c.c denotes complex conjugate.
All quantities are dimensionless. Strictly βR should be an integer to ensure that E(θ+
2π) = E(θ). It is typically much greater than 1. Accordingly, along with most other
authors, we treat β as continuously varying for the purposes of graphical presentation.

Substitution of disturbance form (11) into the linearized equations followed by the
introduction of a new variable, γ = αg − βf, allows pressure terms to be eliminated
leaving two coupled equations:[
i(D2−λ2)(D2−λ̄2)+R(αF+βG−ω)(D2−λ̄2)−R(ᾱF ′′+βG′′)

− iHD(D2 − λ̄2)− iH ′(D2 − λ̄2)− iFD2
]
h+

[
2(G+ 1)D + 2G′

]
γ = 0, (12)[

2(G+1)D−iR(αG′−βF ′)
]
h+

[
i(D2−λ2)+R(αF+βG−ω)−iHD−iF

]
γ = 0, (13)

where D ≡ d/dz, ᾱ = α− i/R, λ2 = α2 + β2 and λ̄2 = αᾱ+ β2.
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The boundary conditions corresponding to this coupled system for the rigid bound-
ary are

h(0) = h′(0) = γ(0) = 0,

h(∞) = h′(∞) = γ(∞) = 0.

This sixth-order system of equations, as originally derived by Malik et al. (1981),
retains the effects of Coriolis acceleration and streamline curvature and defines an
eigenvalue problem of the form

F(α; β, ω, R) = 0.

The most appropriate physical interpretation for this eigenvalue problem is to
consider spatial modes where the frequency, ω, is real and following Mack (1985) it is
assumed that the amplitude distribution is axisymmetric with βi = 0. The eigenvalue
relation thus determines the complex wavenumber, α = αr + iαi, with the local spatial
growth rate given by −αi when the disturbances propagate outwards.

2.1. Numerical solution of the stability equations

The sixth-order system of equations is solved numerically using a Chebyshev-tau
spectral method, chosen because of its computational efficiency and accuracy. The
general Chebyshev-tau formulation also allows a global eigenvalue search scheme to
be implemented for the rigid wall which enables all solution branches to be identified.
Malik et al. (1981) used a similar spectral scheme. They solved for the temporal case
which reduces the size of the computational problem, but involved the use of a group
velocity transformation to obtain spatial eigenvalues, whereas we solve directly for
the spatial eigenvalues.

The numerical scheme begins by transforming the physical space (z ∈ [0,∞]) to the
computational domain (y ∈ [−1, 1]) using the transformation

y =
z − 2

z + 2
. (14)

The system of equations, (12) and (13), written in terms of the computational variable
can be expressed in the form

Ãh+ B̃h′ + C̃h′′ + D̃h′′′ + Ẽhiv + F̃γ + G̃γ′ = 0, (15)

Ṽ h+ W̃h′ + X̃γ + Ỹ γ′ + Z̃γ′′ = 0, (16)

where primes now denote derivatives with respect to y and the coefficients Ã etc.
follow from (12) and (13). Equation (15) is then integrated indefinitely four times and
(16) twice to give∫ ∫ ∫ ∫

(Ã− B̃′ + C̃ ′′ − D̃′′′ + Ẽ iv)h dy +

∫ ∫ ∫
(B̃ − 2C̃ ′ + 3D̃′′ − 4Ẽ ′′′)h dy

+

∫ ∫
(C̃ − 3D̃′ + 6Ẽ ′′)h dy +

∫
(D̃ − 4Ẽ ′)h dy + Ẽh

+

∫ ∫ ∫ ∫
(F̃ − G̃′)γ dy +

∫ ∫ ∫
G̃γ dy = d0 + d1y + d2y

2 + d3y
3, (17)∫ ∫

(Ṽ − W̃ ′)h dy +

∫
W̃h dy +

∫
(Ỹ − 2Z̃ ′)γ dy

+

∫ ∫
(X̃ − Ỹ ′ + Z̃ ′′)γ dy + Z̃γ = e0 + e1y, (18)

where the di and ei are constants of integration.
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The working variables h and γ, in terms of the transformed coordinate, are then
written as two finite Chebyshev series expansions:

h =

N∑
n=0

anTn(y), γ =

N∑
n=0

bnTn(y). (19)

This approximation allows the integrated equations to be discretized and generates
2N + 2 equations in terms of the unknowns a0, . . . , aN, b0, . . . , bN .

The problem is fully specified by the inclusion of six boundary conditions which
replace the equations for n = 0, . . . , 3 and n = 0, 1 in the first and second discretized
equations respectively. The justification for this comes from the fact that these
equations serve only to identify the integration constants di and ei.

The equations are then cast in the form

D(α)

[
a
b

]
= 0, (20)

where D is a square matrix of order 2N + 2, a = [a0, . . . , aN]T and b = [b0, . . . , bN]T .
Using the technique of Bridges & Morris (1984) eigenvalues, α, can be obtained

iteratively from an initial estimate using the formula

αk+1 = αk −
1

f(αk)
, k = 0, 1, . . . (21)

where f(αk) = Tr{D−1(αk)D
(1)(αk)} and Tr{A} denotes the trace of matrix A; D−1(αk)

is the inverse of D(αk) and D (1)(αk) the first derivative of D(αk) with respect to α.

3. Wall motion
In order to reduce the number of possible wall parameters the single-layer compliant

wall chosen for this investigation is assumed to be of infinite depth. This assumption
is reasonable since in practice the disturbances in the boundary layer attenuate as they
propagate down into the wall and only penetrate to a finite depth. The propagation
of disturbances into the wall will be quantified below in §5.3 where the validity of the
infinite-depth assumption will be briefly discussed.

It is necessary to solve for the wall and fluid motion separately in the presence
of a compliant boundary and then couple the two governing sets of equations
through appropriate dynamic and kinematic conditions at the wall/flow interface. The
wall dynamics are described by the Navier equations so that the three-dimensional
dimensionless displacement vector, η = [ξ, η, ζ]T , is governed by the following vector
equation:

η̈ =
ρ

ρs

(
Gs∇2η + Ys∇∇ · η

)
(22)

where Gs and Ks are respectively the dimensionless shear and bulk moduli of the
substrate material, ρs and ρ are respectively the densities of the substrate and fluid,
and Ys = Ks + Gs/3. Throughout a Poisson ratio of 0.49 is used, so that the material
is almost incompressible, which generates the relation Ks = 149Gs/3. Although this
choice is somewhat arbitrary, it can be justified by the fact that the solutions obtained
are little different for any other choice of Poisson ratio near 0.5. Wall damping can
be included through a complex shear modulus

Gs = GRs (1− iγs),
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where γs is a real damping coefficient. In the absence of wall damping the material
can be assumed to be purely elastic.

There is no clearly defined manner in which to express non-dimensional shear
and bulk moduli which are invariant across the disc, since the obvious reference
velocity of r∗eΩ implies that the effective free-stream speed changes with radial lo-
cation. The theoretical problem is therefore considered from a practical viewpoint
where a layer of fixed material property is used and changes in wall compliance
are effected by varying the rotational speed of the disc. Accordingly, an essentially
arbitrary choice can be made for the elastic modulus of the material. To retain some
correspondence with an ongoing experimental research project, all calculations use a
dimensional value of Gs = 1000 N m−2. Note, though, that the effective wall compli-
ance increases as the linear speed, r∗eΩ, and therefore Reynolds number rises Since
the rotating-disc boundary layer is of constant thickness lengths in the wall equa-
tions can be non-dimensionalized with respect to the boundary-layer displacement
thickness.

The standard travelling-wave form is assumed for the non-dimensional displacement
field in response to disturbances within the boundary layer:

η = [ξ̂(z), η̂(z), ζ̂(z)]T exp{i(αr + βRθ − ωt)}+ c.c. (23)

Substitution into the Navier equations then gives:

ξ̂′′ = − 1

Gs
[GsFs + iαYsα̃]ξ̂ −

iαYs
Gs

ζ̂ ′ +
1

Gs
[αβYs − 2β2Gs]η̂, (24)

η̂′′ = − 1

Gs
[GsFs − β2Ys]η̂ −

iβYs
Gs

ζ̂ ′ − 1

Gs

[
2iβGs
R

+ iβYsα̃

]
ξ̂, (25)

ζ̂ ′′ = − 1

(Gs + Ys)
[GsFsζ̂ + Ysα̃ξ̂

′ + iβYsη̂
′], (26)

with Fs = iα/R − α2 − β2 + ρsω
2/(ρGs) and α̃ = 1/R + iα. Both the fluid and solid

densities are assumed to take the value 1000 kg m−3.
Equations (24)–(26) can be written as

η̃′ = K η̃, (27)

where η̃ = [ξ̂′, η̂′, ζ̂ ′, ξ̂, η̂, ζ̂]T and K takes the form

K =


0 0 k13 k14 k15 0
0 0 k23 k24 k25 0
k31 k32 0 0 0 k36

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

Six eigenvalues, ±µi, i = 1, 2, 3, are obtained by solving det(K − µI ) = 0, where I is
the identity matrix. A general solution of the following form then results: ξ̂(z)

η̂(z)

ζ̂(z)

 =

3∑
i=1

 Ai
Bi
Ci

 eµiz +

3∑
i=1

 Āi
B̄i
C̄i

 e−µiz , (28)

where Ai, Bi, Ci, Āi, B̄i and C̄i are constants of integration. For an infinitely deep layer
Āi, B̄i and C̄i must be zero in order to satisfy the requirement of zero displacement at
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infinite depth and the remaining constants are related through (24)–(26). Substitution
of the solutions into (24) and some rearrangement gives

Bi =
(µ2
i − k14)Ai − k13µiCi

k15

. (29)

Equation (25) can then be used to eliminate the Bi:

µ2
i Bi = k24Ai + k25Bi + k23µiCi (30)

to give

Ai = Φ(µi)Ci, Bi = Ψ (µi)Ci, (31)

where

Φ(µi) =
[k23k15µi + k13µi(µ

2
i − k25)]

[µ4
i − µ2

i (k14 + k25) + k25k14 − k24k15]
, (32)

Ψ (µi) =
(µ2
i − k14)Φ(µi)− k13µi

k15

. (33)

This results in a solution for the displacement vector field in terms of three unknown
constants of integration, Ci: ξ̂(z)

η̂(z)

ζ̂(z)

 =

3∑
i=1

 Φ(µi)
Ψ (µi)

1

Cieµiz . (34)

Inclusion of 1/R terms in the wall equations gives rise to non-zero imaginary parts
for the free-wave eigenvalues (calculated by assuming a stress-free wall boundary)
compared to zero values in any corresponding two-dimensional calculation. These
free-wave modes neither decay nor grow if considered in terms of energy transfer
and the appearance of positive values for αi is merely a consequence of the three-
dimensional geometry. The apparent decay of these modes can be attributed to the
pulse of energy which excites them spreading out radially. (It can be shown from
considerations of energy flux that for a purely radial wave αi = 1/2R which is indeed
verified in the numerical results.) In order to correlate with the fluid stability problem,
where αi = 0 denotes the boundary between stability and instability, terms of order
R−1 and smaller are neglected in the wall formulation. This can be thought of as
being analogous to ignoring ‘non-parallel’ effects in the flow.

4. Coupling fluid and wall equations
For the coupled fluid/compliant wall problem boundary conditions are derived by

satisfying the conditions of velocity and stress continuity at the wall/flow interface.
Linearized boundary conditions for the three-dimensional velocity profile at the

interface are

−iωξ̂ = f + F ′(0)ζ̂, (35)

−iωη̂ = g + G′(0)ζ̂, (36)

−iωζ̂ = h. (37)

Continuity of stress is satisfied by applying the relation

σ̄wall(r, θ, 0) = σ̄fluid(r, θ, 0) + ζ̂
∂

∂z
[σ̄M](r, θ, 0),
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where M denotes the mean stress contribution. Therefore at z = 0

σ̄zr = Gs[iαζ̂ + ξ̂′] =
1

R
[iαh+ f′] +

ζ̂

R

∂

∂z

[
1

R

∂H

∂r
(0) + F ′(0)

]
=

1

R
[F ′′(0)ζ̂ + iαh+ f′], (38)

σ̄zθ = Gs[iβζ̂ + η̂′] =
1

R
[iβh+ g′] +

ζ̂

R

∂

∂z

[
1

R2

∂H

∂θ
(0) + G′(0)

]
=

1

R
[G′′(0)ζ̂ + iβh+ g′], (39)

σ̄zz = Ys[iαξ̂ + iβη̂ + ζ̂ ′] + 2Gsζ̂
′ = −π +

2h′

R
+ ζ̂

∂

∂z

[
−P (0)

R2
+

2H ′(0)

R2

]
= −π +

2h′

R
+ O

(
1

R2

)
. (40)

An expression for the pressure term π at the mean undisturbed wall position is
obtained from the radial momentum equation such that

π(0) =
1

R

[
f′′ − λ2f + 2g

]
+ iωf − F ′(0)h, (41)

which can be rewritten in terms of h and γ through the use of the continuity equation.

Transformation to the computational domain allows the coupling conditions to be
expressed in the form of two matrix equations:†

[ξ̂, η̂, ζ̂]Tw = [R]C = [S]H , (42)

[σ̄zr, σ̄zθ, σ̄zz]
T
w = [X ]C = [Y ]H , (43)

where C = [C1, C2, C3]
T and H = [h′′′, h′′, h′, h, γ′′, γ′, γ]Tw (suffix w indicates evaluation

at the wall/flow interface.) and R ,S ,X and Y are complex matrices. Elimination of
the unknown vector C then gives rise to three conditions which replace the wall
conditions of the rigid boundary problem:

[R−1S − X−1Y ]H = [0, 0, 0]T . (44)

Centrifugal forces arising as a result of system rotation are expected, in practice, to
exert some influence on the compliant wall, causing it to undergo a certain amount
of displacement, even in the absence of any boundary-layer disturbances. This may
result in some form of ‘bulging’ at the edges. In the present theoretical calculations,
where the disc is assumed to be infinite in extent, edge effects are not included in
the problem formulation and this effect is neglected. The significant radial variation
in the mean pressure may also affect the degree of compliance slightly as a result
of interaction between the perturbation and mean pressure fields in the wall. This
was demonstrated theoretically by Yeo, Khoo & Chong (1994b) who show that a
sufficiently large mean pressure field can significantly affect the stability characteristics
of a two-dimensional boundary layer over a compliant wall. With the present linear
wall model such effects cannot be modelled.

† A slightly different formulation is used when considering stationary disturbances.
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4.1. Validation of rotating disc/compliant wall code

Since there are no existing results on this stability problem to compare with our results,
a number of tests have been carried out in order to establish that our code was working
correctly. The rigid-wall stability characteristics for stationary disturbances have been
well-documented (Mack 1985; Malik 1986) and good agreement has been obtained
between our results and theirs. The first test was to confirm, by increasing the value of
N, that the code converged sufficiently well. Convergence on eigenvalues was achieved
to an acceptable degree of tolerance for N = 56 compared to a value of N = 40 for the
rigid-wall code. This is generally the case for compliant wall problems where greater
variation occurs in the near-wall region requiring increased resolution to give the same
degree of accuracy. The second check for the compliant-wall problem was to take the
limiting value of the wall parameter which renders the boundary equivalent to a rigid
wall (which is in effect to consider the limit Gs → ∞). This gave satisfactory results
and agreement with a wide range of rigid-wall eigenvalues for Gs/ρ ≈ 20. The basic
numerical code has also been satisfactorily tested for the Orr–Sommerfeld/Blasius
boundary-layer compliant problem against existing validated results.

5. Results
5.1. Stationary modes

The effect of wall compliance on the neutral curves for stationary disturbances is
demonstrated in figure 2, where three different rotation rates have been considered.
For these results and subsequently, until indicated otherwise, there is no wall damping,
i.e. γs = 0, making the wall material purely elastic. The effect of rotation on the
compliant wall is to change its effective compliance by variations in Ω if R remains
fixed, whereas rigid-wall characteristics are unchanged. It can be seen that wall
compliance has a stabilizing influence on the Type I eigenmodes with slight increases
in the critical Reynolds number as the effective wall compliance is increased (higher
rotation speeds). But, the effect on the stationary Type II eigenmode (Rc = 440 for the
rigid wall) is more complex. For relatively low levels of wall compliance the effect is
destabilizing and a striking feature is the enlarged region of instability corresponding
to Ω = 20 rad s−1 where the critical Reynolds number has fallen to 177. However,
the destabilizing influence on the Type II mode is not a consistent feature and as
the degree of wall compliance is raised this unstable region shrinks and ultimately
vanishes at Ω = 60 rad s−1.

When considering the effect of wall compliance it is perhaps more important to
consider the growth rates. The most rapidly growing mode is likely to dominate and
be the one detected in experiments, so how wall compliance affects the maximum
growth rate is of significance. Figure 3 shows amplification curves for the stationary
Type I instability with the disc rotating at 60 rad s−1 at four different values of
Reynolds number. This demonstrates the full effect of the compliant boundary and
indicates a substantial stabilizing influence with the maximum growth rate reduced
by more than 50% of the corresponding rigid-wall value at R = 600.

Amplitude ratio (or gain) provides an even better indication of the effects of wall
compliance and have been calculated using an eN-type of calculation following the
method of Mack (1985) where −αi is integrated from a fixed Reynolds number of
R0 = 250 (not the critical) such that

ln

(
A1

A0

)
=

∫ R1

R0

(−αi)dR.
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Figure 2. Neutral curves for stationary disturbances over rigid and compliant boundaries showing
variation of R with (a) β, (b) αr and (c) wave angle, ε = tan−1(β/αr). Solid grey curve, rigid wall;

compliant wall : - -, Ω = 20 rad s−1; —, Ω = 40 rad s−1; · · ·, Ω = 60 rad s−1.
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Figure 3. Amplification rates, −αi, for stationary Type I disturbances as a function of azimuthal
wavenumber: —, rigid wall; - -, compliant wall, Ω = 60 rad s−1. (a) R = 300, (b) R = 400,
(c) R = 500, (d) R = 600.
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Figure 4. Amplitude ratios for the Type I stationary instability referenced to R = 250.
(a) Rigid wall, (b) compliant wall, Ω = 60 rad s−1.

A0 is the initial disturbance amplitude and A1 the corresponding amplitude at R1. The
integration is performed under the condition of constant βR.

Previous eN calculations for the rotating-disc boundary layer have been carried
out by Malik et al. (1981), where spatial eigenvalues obtained from a group velocity
transformation were integrated from a lower limit equal to the critical Reynolds
number and calculations were based on a transitional Reynolds number of R = 513.
They found that a factor of N = 10.7 corresponds to the transition location for
the rigid disc. In their later improved experimental study (Wilkinson & Malik 1983,
1985) they concluded that the appropriate value of N lies between 9 and 10. For the
compliant wall it is quite possible that the nonlinear regime of transition is radically
different from the process over a rigid wall. Accordingly we have used a value of
N = 7 in the present calculations, since this value corresponds approximately to the
limit of the linear regime of transition in a low-noise environment. Thus when we
use N = 7 to make comparisons of the amplitude ratios attained between rigid and
compliant walls, it could be argued that we have not gone beyond the scope of our
linear theory.

Differences in the calculation of the N-factor do not allow strict comparisons with
the predictions of Malik et al. but the main point of this calculation is to compare
results between rigid and compliant walls. Figure 4 shows amplitude ratio curves for
(a) the rigid wall and (b) the compliant wall at Ω = 60 rad s−1 starting at R = 300
and progressing in Reynolds number steps of 50. The labels in the figure refer to the
Reynolds number of the outer amplification curve. It can be seen that the value of R
at which N ≈ 7 rises significantly to well above 850 when the compliant boundary is
in place, suggesting that the reduced growth rates brought about by wall compliance
also imply a delay in the onset of transition provided it occurs via the convective
Type I instability.

5.2. Energy equation

An integral energy equation for three-dimensional disturbances, [u, v, w, p], to an
undisturbed three-dimensional boundary-layer velocity field, [U,V ,W ], is derived
in order to establish some underlying physical mechanisms behind the effect of
the compliant boundary. The linearized momentum equations are multiplied by u, v
and w respectively and summation of the combined equations, after some manip-
ulation, gives rise to the following governing equation for the kinetic energy of
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the disturbances:{
∂

∂t
+ U

∂

∂r
+
V

r

∂

∂θ
+W

∂

∂z

}
K = −uw∂U

∂z
− vw∂V

∂z
− w2 ∂W

∂z

− u2 ∂U

∂r
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− 1
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[
∂

∂r
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1

r

∂

∂θ
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∂

∂z
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r

]
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1

ρ

[
∂

∂xi
(ujσij)− σij

∂uj

∂xi

]
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2

r
− 2u

r2
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∂θ
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r2

∂u

∂θ
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+
1

r
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+

1

r
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+

1

r
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+

1

r

{
u
∂u

∂r
+
v

r

∂u

∂θ
+
w

r

∂u

∂z

}]
, (45)

where σij represents the viscous stress terms, repeated suffices indicate summation
from 1 to 3 and K = 1

2
(u2 + v2 + w2).

By averaging the perturbations over a single period and aziumthal mode and
integrating across the boundary layer, the derivatives with respect to t and θ, given
real β, vanish to leave∫ ∞

0

[
U
∂K

∂r︸ ︷︷ ︸
a

+
1

ρ

∂

∂r
(up)︸ ︷︷ ︸

b

− 1

ρ

∂

∂r
{uσ11 + vσ12 + wσ13}

]
︸ ︷︷ ︸

c

dz

=

∫ ∞
0

[(
−uw∂U

∂z

)
+

(
−vw∂V

∂z

)
+

(
−w2

∂W

∂z

)]
dz︸ ︷︷ ︸

I

− 1

ρ

∫ ∞
0

(
σij
∂uj

∂xi

)
dz︸ ︷︷ ︸

II

− 1

ρ

∫ ∞
0

(
up

r

)
dz +

1

ρ
(wp)w︸ ︷︷ ︸

III

− 1

ρ
[uσ31 + vσ32 + wσ33]w︸ ︷︷ ︸

IV

−
∫ ∞

0

W
∂K

∂z
dz −

∫ ∞
0

u2
∂U

∂r
dz −

∫ ∞
0

Uv2

r
dz︸ ︷︷ ︸

V

, (46)

where overbars denote a period-averaged quantity, w subscripts denote quantities
evaluated at the wall and O(1/r) viscous terms have been dropped consistent with
the neglect of O(1/R2) terms in the stability analysis.

Terms easily identified from the two-dimensional Cartesian version of this equation
are the Reynolds stress production terms (I) and the viscous dissipation contribution
(II). Term III contains pressure work terms where (wp)w represents the work done
by the fluctuating pressure on the wall and an additional pressure term arises from
the use of the cylindrical coordinate system. Term IV describes the work done on
the wall by the viscous stresses. The terms labelled V contains elements arising from
streamline curvature effects and the three-dimensionality of the mean flow profile
and have no corresponding two-dimensional Cartesian counterparts. In the energy
analysis of Faller (1991) similar contributions were described as being dependent
upon the geometrical effects of the change of R with radius (Rossby number terms).
On the left-hand side there is the average disturbance kinetic energy convected by
the radial mean flow component (a) followed by the work done by the perturbation
pressure (b) and viscous stresses across some internal boundary in the fluid (c).
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Figure 5. Comparison of numerical values between rigid and compliant contributions to terms in
the energy balance equation at R = 600, ω = 0. Unshaded regions correspond to compliant wall
at Ω = 60 rad s−1 and shaded regions to rigid wall. P1 and P2: Reynolds stress production terms
in radial and azimuthal directions respectively; D: viscous dissipation; S1 and S2: work done by
viscous stresses at the wall in radial and azimuthal directions respectively.

The equation is subsequently normalized by the integrated mechanical energy flux
so that

−2αi = normalized energy contributions

= (P1 + P2 + P3)(I) + D(II) + (PW1+PW2)(III) + (S1 + S2 + S3)(IV)

+ (G0 + G1 + G2)(V)

The notation for the constituent terms corresponds to the labelling in figures 5 and
8.

The energy calculation was carried out for the Type I instability at R = 600 and
the various terms for the rigid wall and the compliant wall at Ω = 60 rad s−1 are
compared for the most rapidly growing modes. Since the disturbances are stationary,
the form of the compliant-wall boundary conditions implies that terms involving

w = ĥei(αr+βRθ−ωt) + c.c. are identically zero. In the numerical calculations both sides
of the energy equation are found to agree to at least three significant figures.

The constituent terms in the energy equation are compared in figure 5 where
negligible terms have been omitted. The major influence of wall compliance is seen to
occur through reductions to the rate of energy production by the Reynolds stresses
and through an increase in conventional viscous dissipation. Work done by the viscous
stresses at the wall plays a minor role with other terms negligible. Wall compliance
therefore appears to have the same physical influence on this inviscid instability, in
the way that growth rates are controlled, as it does on the viscous T–S instability.

5.3. Travelling-wave modes

The effect of wall compliance on non-stationary Type I modes is illustrated in figure
6 where maximum growth rate is plotted as a function of frequency. Negative values
of frequency are taken to represent inwardly travelling disturbances, given that the
wavenumber vector is restricted to point outwards in the direction of increasing
radius. Wall compliance is seen to affect both the global maximum growth rate
and the frequency range across which instability occurs. With increasing levels of
wall compliance the maximum growth rate is reduced and moves to more positive
frequencies with almost complete stabilization occurring at Ω = 60 rad s−1. No marked
differences arise in terms of the radial wavenumber αr at each β value so that as
wall compliance is increased the value of β and the wave angle of the most rapidly
growing mode are reduced. These observations are summarized in table 1.
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Figure 6. Effect of wall compliance on the maximum growth rate of the Type I disturbance across
the unstable frequency range at R = 300. (a) Rigid wall; compliant wall: (b) Ω = 20 rad s−1;
(c) Ω = 40 rad s−1; (d) Ω = 60 rad s−1.

Wall type (−αi)max ωmax βmax εmax

Rigid 0.0089395 −0.013 0.0980 15.37

Compliant: Ω = 20 rad s−1 0.0056594 −0.008 0.0890 13.61

Compliant: Ω = 40 rad s−1 0.0027896 −0.002 0.0765 11.85

Compliant: Ω = 60 rad s−1 0.0003852 0.000 0.0730 11.16

Table 1. Parameters giving maximum growth rate of Type 1 instability for travelling disturbances at
R = 300. Subscript max refers to the position of maximum growth rate across the whole frequency
range

Travelling Type II modes generally have a much lower critical Reynolds number
than Type I travelling modes (RcII = 64.46 compared to RcI = 283.6, Balakumar &
Malik 1990). Consequently unstable travelling Type II modes exist when the Type
I disturbance is completely stable. Computations have been carried out at R = 100
and 200 for a disc rotation speed of Ω = 40 rad s−1 in order to establish the effect
of wall compliance on the travelling-wave Type II instability. Results are shown in
figure 7 where maximum growth rate is plotted as a function of frequency. It can be
seen that wall compliance is mildly destabilizing at R = 100 but the effect becomes
more pronounced at R = 200, with a large departure from the general rigid-wall
characteristics at the low-frequency end of the unstable range. Here frequencies which
are completely stable for the rigid wall become strongly unstable in the presence
of the compliant wall. The sharp peak in maximum growth rate evident in figure
7(b) marks a change in the character of the solution which is discussed in more
detail later. Results from an energy balance calculation at one of these frequencies
(ω = 0.0095) are given in figure 8. This shows that the destabilization occurs through
a large contribution to energy production from work done by viscous stresses at the
wall, a component of the energy balance which is negligible in the results for the Type
I instability. It is postulated that the large viscous stress work terms arise from the
action of Coriolis forces in the system whereby motion perpendicular to the direction
of propagation is induced resulting in large displacements at the interface. It should
be noted that non-parallel effects are likely to be much stronger at these relatively
low values of R and may well substantially modify the results discussed above

At higher Reynolds numbers the presence of a compliant boundary produces



Rotating-disc boundary-layer flow over a compliant wall. Part 1 249

0.020

0.015

0.010

0.005

0
0.05 0.10 0.15

(a)

x

(–
α

i)
m

ax

0.06

0.04

0.02

0
0.05 0.10 0.15

(b)

x
0

Figure 7. Effect of wall compliance on maximum growth rate of Type II disturbance across the
unstable frequency range at (a) R = 100, (b) R = 200: - -, rigid wall; —, compliant wall at
Ω = 40 rad s−1.
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Figure 8. Energy budgets for Type II instability at R = 200, ω = 0.0095, β = 0.0125. Unshaded
regions correspond to compliant wall at Ω = 40 rad s−1. Notation as for figure 5.

more complex behaviour. This is apparent in figure 9 where at R = 400 a region
of anomalous growth is evident for a range of values of β near zero which also
correspond to a band of positive frequencies. It appears to be no coincidence that this
irregular behaviour occurs in the ω–β range for which the Type I and II rigid-wall
instabilities coexist and is similar to the type of behaviour in figure 7(b). This striking
feature is found to persist at higher Reynolds numbers and rotation rates, but is
completely eliminated when Coriolis and streamline curvature effects are neglected
in the governing stability equations. The removal of these terms decouples the sixth-
order system of equations and reduces the stability problem to that described by the
Orr–Sommerfeld equation. The Type II mode is then effectively removed from the
analysis since Coriolis effects are essential for its existence as an instability. The fact
that removing the Type II instability eliminates the enlarged region of instability, plus
the similarities with results for Type II at R = 200, suggest that the anomalous growth
of instability is directly related to the destabilization of the Type II disturbance.

The physical effects of this strong destabilization can be revealed by considering flow
and wall eigenfunctions and this may also possibly give some clues to help identify
the mechanisms responsible. The eigenmode spectrum at R = 400 for ω = 0.004
and Ω = 20 rad s−1 is shown in figure 10. Eigenvalues corresponding to the stabilized
Type I mode and the destabilized Type II mode are marked A and B respectively.
Comparison of the compliant- and rigid-wall results reveals that the compliant-wall
eigenmodes seem to exchange identities near the point where the two branches cross
for the rigid wall. This is indicative of modal interaction. Flow eigenfunctions for
eigenmodes A and B are illustrated in figure 11 and the change in the nature of the
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Figure 9. Amplification curves at R = 400. Grey lines indicate the amplification rate at a number
of frequencies for the compliant wall at Ω = 20 rad s−1. Black lines indicate the rigid-wall maximum
amplification envelopes.
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Figure 10. Eigenvalue spectrum at R = 400, ω = 0.004 showing growth rate as a function of
azimuthal wavenumber: - - , rigid wall branches; —, compliant wall, Ω = 20 rad s−1.

instability is clearly demonstrated. The maximum amplitude in both cases occurs with
the azimuthal component of velocity but its position in the boundary layer and the
general profiles are markedly changed. Large amplitudes are shown to occur exactly
at the wall/flow interface for eigenmode B whereas for eigenmode A the main effect
occurs some way into the boundary layer. The corresponding wall eigenfunctions are
given in figure 12.

Figure 12 gives an indication of the validity of the assumption of an infinitely deep
compliant wall. Figures 12(a, b) show that for the Type I instability the disturbance
in the wall effectively disappears at a depth of z ' 20. For water (ν = 10−6 m2 s−1)
and the given rotational speed Ω = 20 rad s−1 this corresponds to a depth of less
than 5 mm. The disturbances penetrate further in figure 12(c, d) for the Type II
instability to about z ' 50 (i.e. about 11 mm). For our experimental programme the
wall thickness is about 10 mm, so it would seem reasonable to regard the present
results as a reliable guide to the behaviour of the instabilities in the experimental
investigation.

The effect of wall damping on the Type I mode is demonstrated in figure 13(a).
At R = 300 the frequency selected corresponds to the one which gives the maximum
growth rate at Ω = 20 rad s−1. It is shown that increased levels of wall damping tend
to be destabilizing which suggests that the Type I eigenmode is a Class A instability
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Figure 12. Wall eigenfunctions for compliant wall at R = 400, ω = 0.004 and Ω = 20 rad s−1.
Amplitudes and phase angles for eigenmode A are plotted in (a) and (b) respectively, and those
for eigenmode B are plotted in (c) and (d) respectively. Amplitudes are normalized such that the
maximum value is 1.0. Phase angles are plotted against an arbitrary origin. —, vertical displacement

ζ̂; - -, horizontal displacement ξ̂ cos ε+ η̂ sin ε.
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Figure 13. Change in growth rates with the inclusion of wall damping at Ω = 20 rad s−1 for (a)
Type I mode at R = 300, ω = −0.008: —, undamped wall; - -, γs = 0.0075; · · ·, γs = 0.0125. (b)
Type II mode at R = 300, ω = 0: —, undamped wall; - -, γs = 0.025; · · ·, γs = 0.05.

(or negative energy wave) in the energy classification scheme of Benjamin (1960,
1963) and Landahl (1962). Figure 13(b) indicates that damping has a stabilizing
influence on the Type II mode. This, together with the adverse reaction to wall
compliance, defines it as a Class B instability (or positive energy wave). The fact
that the Type I and II eigenmodes are of opposite energy type raises the possibility
that they may well interact and coalesce. There is at least a hint of this occurring
in figure 9. In fact, Lingwood (1995) in her figure 5 shows that there is a point of
coalescence between the two eigenmodes at R = 515 even for the rigid wall. A similar
phenomenon occurs for the Blasius boundary layer over a compliant wall when under
the appropriate conditions the T–S waves can coalesce with the travelling wave flutter
to form a powerful instability; see Carpenter & Garrad (1985), Sen & Arora (1988)
and Carpenter (1990). The high amplification rates for the small positive values of β
in figure 9 may well be evidence of something similar.

We investigated the conditions for the first occurrence of modal coalescence both
for the rigid wall and for the compliant wall with Ω = 20 rad s−1. Illustrative results
are plotted in figures 14 and 15. At the lower Reynolds numbers where coalescence
first occurs αi > 0, i.e. the eigenmode is spatially stable. At higher values of R, αi
becomes negative at the point of coalescence. The conditions for which coalescence
first occurs and for which the point of coalescence coincides with neutral stability
are given in table 2 for both the rigid and compliant walls. It can be seen that
modal coalescence occurs at a substantially lower value of R for the compliant wall
than for the rigid surface. Including damping appears to postpone the appearance of
coalescence to higher values of R or β depending on which parameter is fixed. This
is reflected to some extent in figure 16. The approximate variation of αi at the point
of coalescence with R for the damped and undamped compliant wall is sketched
in figure 17. Very extensive computational work would be required to produce an
accurate version of figure 17.

What, then, is the significance of the modal coalescence? Figure 18 shows −αi and
the group velocity plotted against β for the conditions when coalescence first occurs
for the compliant wall. (The group velocity is defined here as the real part of ∂ω/∂α.)
As would be expected the group velocity becomes zero at the point of coalescence.
This suggests the possibility of an absolute instability. In order to verify the existence
of absolute instability the pinch-point criterion of Briggs (1964) must be satisfied.
Lingwood (1995, 1997) uses his approach to study the response of the rotating-disc
boundary layer to impulsive excitation. The response is modelled as a double inverse
Fourier transform with respect to complex ω (= ωr + iωi) and complex α. In order
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Figure 14. Spatial branches I and II in the α-plane (ωi = 0) for the rigid wall. (a) R = 437,
β = 0.041; (b) R = 439, β = 0.038; (c) R = 450, β = 0.030; (d) R = 500, β = 0.013. Coalescence
takes place at the lower of the two intersection points. The upper intersection point is an artifact
of the projection of the branches from the (ω, α) space onto the α-plane.

to evaluate the Fourier transform the appropriate integration path in the complex
α-plane must be chosen. The choice is made by initially choosing the value ωi to
be sufficiently large so as to exceed any possible temporal growth rates. ωi is then
progressively reduced to zero. When two poles, corresponding to eigenmodes, merge
as ωi is reduced there are two possible outcomes.

(i) If the two coalescing eigenmodes originate (at the initial value of ωi) on
opposite sides of the real axis in the α-plane then a pinch point forms where the
corresponding poles merge and the integration path must move off the αr-axis and
pass through the pinch point. If ωi > 0 at the pinch point true temporal growth will
occur implying absolute instability.

(ii) On the other hand if the poles originate in the same half of the α-plane a pinch
point is not formed when they merge. ωi can be reduced to zero and the integration
path can be chosen to avoid the double pole; this can then be dealt with by means
of the residue theorem. In this case true temporal growth does not occur implying it
is not an absolute instability and, therefore, presumably convective.

Lingwood (1995, 1997) describes this procedure in detail. She shows that when
Type I and III instabilities coalesce in the case of the rigid wall a pinch point is
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Figure 15. Spatial branches I and II in the α-plane (ωi = 0) for the compliant wall with Ω = 20
rad s−1. (a) R = 373, β = 0.042; (b) R = 380, β = 0.035; (c) R = 387, β = 0.031; (d) R = 400,
β = 0.025. The black curves correspond to undamped walls and the grey curves to damped walls
(γs = 0.05). Coalescence takes place at the lower of the two intersection points.

Wall type αr αi ω β R

Rigid 0.185 0.0015 0.0061 0.041 437
0.188 0 0.00814 0.036 439

Compliant: Ω = 20 rad s−1 0.193 0.0078 0.0047 0.042 373
0.213 0 0.0132 0.031 387

{
Table 2. Parameters corresponding to the first appearance of the coalescence between the Type I

and II eigenmodes and to it occurring at a point of neutral stability

formed. We find that this also occurs for a compliant wall. But even a relatively low
level of wall compliance leads to a substantial rise in the critical Reynolds number for
the absolute instability. This will be discussed in detail in Part 2 of the present paper.
In the case of the coalescence of Type I and II instabilities, Lingwood shows that a
pinch point does not form. We find that the use of a compliant wall does not alter
this state of affairs. All that happens is that with wall compliance modal coalescence
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Figure 16. Expanded view of the spatial branches for the compliant wall with Ω = 20 rad s−1 and
R = 387 near the point of coalescence to show effects of damping and of slight variation in β:
——, β = 0.0305 (undamped); – · –, β = 0.0305 (damped); - - - , β = 0.0308 (damped). γs = 0.05
for damped walls. Coalescence takes place at the lower of the two intersection points.
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Figure 17. Sketch of the variation of αi at the point of coalescence with R for damped and
undamped compliant walls.

occurs at a lower Reynolds number. Note that this is precisely opposite to the effect
of wall compliance on the absolute instability.

Does the second type of modal coalescence have any special significance? This
question has been relatively little explored. It is not difficult to show from the residue
theorem that terms of the form r exp{i(αr + βRθ − ωrt)} appear when the Fourier
integral is evaluated. Koch (1986) refers to this as direct resonance and investigates it
in detail for the Orr–Sommerfeld equation. Terms of this form suggest the possibility
of local algebraic growth even when the spatial growth rate is negative (i.e. −αi < 0)
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Figure 18. (a) Eigenmode structure and (b) group velocity for compliant wall at R = 373,
ω = 0.00467 and Ω = 20 rad s−1.

provided that the absolute value is fairly small. When the initial amplitude of the
disturbance is large enough such algebraic growth can lead rapidly to nonlinear effects
and provide another route to transition. Indeed Landahl and his co-workers (e.g. see
Landahl 1980; Breuer & Haritonidis 1980; Breuer & Landahl 1990; Henningson,
Lundbladh & Johansson 1993) have shown that local algebraic growth may well play
a part in a possible by-pass transition mechanism.

6. Conclusions
The effect of an infinitely deep, single-layer, viscoelastic wall on instability in the

rotating-disc boundary layer has been investigated.
In general this form of wall compliance is shown to increase the complexity of

the eigenmode spectrum greatly and can have a significant stabilizing effect on the
inviscid Type I instability. For stationary Type I disturbances instability growth rates
and amplification rates at fixed Reynolds numbers are considerably reduced in value.
The effect on amplitude ratio indicates a substantial increase in transitional Reynolds
number if the Type I instability remains the route to transition. An analysis of
the energy flux for this mode indicates that the stabilizing effect of the compliant
boundary occurs through a reduction in energy production by the Reynolds shear
stress and an increase in viscous dissipation.

The response of the viscous Type II mode to wall compliance is shown to be
more complex. It is sensitive to rotation rate (i.e. to degree of wall compliance). For
relatively low levels of wall compliance the effect is destabilizing whereas it becomes
stabilizing for higher levels of compliance.

Travelling-wave modes have also been studied. At R = 300 both the overall
amplification rate and the range of frequencies across which Type I instability occurs
were successively reduced with increasing levels of wall compliance. However, it
appears that wall compliance promotes a detrimental effect on the Type II instability
leading to significantly large growth rates. A feature associated with this is the
penetration of the boundary-layer disturbances to larger depths within the wall. The
response of the Type I and II instabilities to wall damping identify them as negative
and positive energy waves respectively. The co-existence of instabilities of opposite
energy type suggests the possibility of modal coalescence. It is found that, compared
with the rigid disc, wall compliance promotes modal coalescence. It is suggested that
this may be associated with local algebraic growth, possibly hastening the onset of
nonlinear effects.

For the type of wall studied in the present paper there is a significant degree
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of freedom for horizontal motion. It may be that this makes the walls particularly
vulnerable to the destabilization of the Type II eigenmode and the accompanying
coalescence with the Type I mode. The addition of a thin, stiffer upper layer should
act to constrain this horizontal motion and possibly suppress the destabilization of the
Type II eigenmode. Results of direct numerical simulations by Davies & Carpenter
(1995) (also reported in Carpenter 1997), using a spring-backed plate model for the
compliant wall, appear to support this argument.

The work described in this paper was supported by research grants from EPSRC
and MTD Ltd. The authors would also like to acknowledge useful discussions with
Dr Rebecca Lingwood.
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